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• The twin satellites Sentinel-2 are used for
mapping shallow seabed cartography.

• Several environments are evaluated along
the Caribbean and eastern coast of the
USA.

• Amulti-temporal compositing method au-
tomatically addresses water quality issues.

• Themaximum detectable depth is defined
and optically deep-water areas are re-
moved.

• The model provides comprehensively and
detailed operational bathymetric monitor-
ing.
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Monitoring the complex seafloor morphology that drives the functioning of shallow coastal ecosystems is vital for
assessing marine activities. Satellite-derived bathymetry (SDB) can provide a crucial dataset for creating the bathym-
etry maps needed to understand hazards and impacts produced by climate change in vulnerable coastal zones. SDB is
effective in clear water, but still has limitations in application to areas with some turbidity. Here, using the twin satel-
lites Sentinel-2A/B, we integrate water quality information from the satellite with a multi-temporal compositing
method to demonstrate a potential for comprehensively operational bathymetric mapping over a range of environ-
ments. The automated compositing method diminishes the turbidity impact in addition to inferring the maximum de-
tectable depth and removing optically deep-water areas. Examining a wide range of conditions along the Caribbean
and eastern coast of the U.S. shows detailed bathymetry as deep as 30 m at 10 m spatial resolution with median errors
<1 m when compared to high-resolution lidar surveys. These results demonstrate that the model adopted can provide
useful bathymetry in areas that do not have consistently clear water and can be extended across multiple geographic
regions and optical conditions at local, regional, and national scales.
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1. Introduction

Coastal regions are strategic environments, representing an immense
socio-economic and ecological value to biodiversity conservation, sustain-
able development, and climate change mitigation (Beck et al., 2018; Su
et al., 2021). In addition, around 10 % of the world's population lives in
uary 2023
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low-elevation coastal zones, which are most vulnerable to the dynamics of
natural and human-induced changes (Neumann et al., 2015; Luijendijk
et al., 2018; Melet et al., 2020). Large-scale observations of critical param-
eters, such as shallow coastal bathymetry, are required to comprehend and
predict coastal changes (Beck et al., 2018; Turner et al., 2021). Precise and
up-to-date bathymetric information is basic for navigation, integrated
resource management, marine spatial planning, nearshore hydrological
studies, commercial and military activities, offshore engineering projects,
fisheries, and aquaculture, among many other applications (Kendall et al.,
2018; Cesbron et al., 2021). Furthermore, high-resolution bathymetric
maps represent a crucial dataset to describe the seafloor and its benthic
habitats (Hedley et al., 2018) and to understand hazards and impacts pro-
duced by climate change, sea level rise, and erosional trends at hotspots
(Lin et al., 2012; Vitousek et al., 2017; Kendall et al., 2018). However, ac-
cording to the International Hydrographic Organization (IHO C-55,
2021), an estimated half of the world's shallow seafloor remains
unsurveyed, and available bathymetric information is frequently inade-
quate or decades old. Conventional surveying techniques, such as lidar on
aircraft and echo sounders on ships, are constrained by environmental
(waves and shallow water for shipboard, and turbidity for lidar) and logis-
tical limitations, with practical deployment typically in relatively small
areas (Cesbron et al., 2021). Mapping, charting, and change detection
will benefit from the implementation of new cost-effective techniques for
obtaining bathymetry at a range of scales.

In shallow coastal regions, satellites with Earth Observation (EO) capa-
bilities are the only source of information available to complement the
more restricted in situ measurements. In this sense, satellite-derived ba-
thymetry (SDB), the determination of water depths with remote sensing,
provides a potential alternative for cost-effective synoptic monitoring
(Turner et al., 2021). Cesbron et al. (2021) discussed the state-of-the-art
on SDB approaches and end-user requirements for many marine sectors,
highlighting that integrating SDB into the bathymetry toolbox will provide
the best compromise in coverage, time, and investment for generating
needed bathymetric information. Publicly available, routinely sampled,
and easily accessible satellite optical images have achieved a stage of matu-
rity to support the development of SDB in the last decade (Dekker et al.,
2011; Kutser et al., 2020; Turner et al., 2021). As SDB application continues
to expand, defining the potential, reliability, and limitations takes on new
significance. Furthermore, the Seabed 2030, a collaborative project be-
tween the Nippon Foundation of Japan and the General Bathymetric
Chart of the Oceans (GEBCO), aims to bring together all available bathy-
metric data to produce a definitive and accessible map of the world ocean
floor by 2030. Doubtless, SDB techniques can help achieving this objective
by filling the GEBCO coastal database.

SDB was developed for environments such as coral atolls that have ex-
tremely clear water; as a result, SDB methods still have limitations, particu-
larly when applied to the turbid nearshore areas found inmost of theworld's
coastal systems (Kutser et al., 2020). Turbidity typically causes an underesti-
mation of depths, severely affecting the performance of SDBmodels (Stumpf
et al., 2003; Minghelli-Roman and Dupouy, 2013; Hamylton et al., 2015;
Pe'eri et al., 2016; Caballero et al., 2019; Caballero and Stumpf, 2020a,b;
Casal et al., 2020). Multi-scene approaches overcoming present limitations
in SDB applications have been proposed as a solution to achieving more ac-
curate and reliable bathymetry (Traganos et al., 2018; Caballero and Stumpf,
2020a,b; Kutser et al., 2020; Lebrec et al., 2021). In addition, SDB is not ef-
fective in optically deepwaters (ODW), thosewaters where a signal is not re-
turned from the bottom due to the combination of turbidity and depth
(Dekker et al., 2011). Typically, visual interpretation and manual selection
are used to select optimal imagery for SDB purposes, but these procedures
are labor-intensive and subjective. Therefore, to ensure excellent accuracy
and stability, especially over moderately turbid environments, automated
correction for atmospheric and turbidity effects (Kutser et al., 2020;
Ashphaq et al., 2021¸ Cesbron et al., 2021) and identification of ODW (Cao
et al., 2020; Lee et al., 2021; Lee et al., 2022) are essential steps.

The Multispectral Instrument (MSI) on the Sentinel-2A/B twin satellite
mission of the European Commission's EO Copernicus program is now a
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resource that provides routine and frequent global coverage with free and
open-data access policy to all users. The Sentinel-2 constellation currently
benefits mapping services and applications such as agriculture, land man-
agement, forestry, risk mapping, disaster control, and security issues
(Osadchiev, 2018; Lacroix et al., 2020; Plank et al., 2020; Hunt et al.,
2021; Normandeau et al., 2021; Rajendran et al., 2021; van Zelst et al.,
2021). Sentinel-2 MSI also provides the ability to efficiently and repeatedly
monitor water bodies with high temporal (5-day revisit at the equator) and
spatial (10 m) resolutions, substantially enhancing data collection
(Bergsma and Almar, 2020¸ Biermann et al., 2020; Caballero et al., 2020;
Cira et al., 2022). Because the decametric Copernicus Sentinel-2 time series
is freely available and routinely acquired at high frequency, it is an optimal
source of data-compared to commercial metric or sub-metric very high
resolution (VHR) imagery-for developing operational SDB monitoring pro-
grams at regional or national scales. This is particularly the case in dealing
with transient conditions such as turbidity, which requires multi-temporal
imagery.

In this study, we examined the effectiveness of an innovative multi-
temporal composite algorithm implemented with the MSI imagery
(Caballero and Stumpf, 2020a,b) to produce accurate water depths over
several areas having differing turbidity and other environmental condi-
tions. We further developed and applied a procedure to infer the maximum
detectable depth tomask out ODW. Themain objectivewas to demonstrate
that this semi-automated approach can be applied in tropical and mid-
latitude areas having different atmospheric conditions, water quality, and
seabed habitats along the eastern coast of the U.S and the Caribbean
(Figs. 1 and 2). High-resolution lidar surveys were used for SDB skill assess-
ment, model accuracy, and consistency verification. We show the SDB
algorithm's strength, especially the multi-scene compositing process that
takes care of many issues, overcoming the challenges faced by the tradi-
tional single-scene models. With the advancement of satellite technologies
and improved adaptability of SDB in heterogeneous environments, as ex-
hibited in this study, we advocate the generation of future bathymetric
maps of the world's coastal areas with full coverage employing the
Sentinel-2 twin satellite mission.

2. Methods

2.1. Satellite imagery

The Sentinel-2A/B twin mission was utilized for SDB due to the open
data access policy and high spatial resolution (10-20-60 m). The European
Commission and the European Space Agency (ESA), in the frame of the
Copernicus program, developed this optical constellation to support opera-
tional requirements for land, lakes, and coastal waters. The two satellites
have a global revisit frequency of five days at the Equator. Details on the
temporal, spectral, spatial, and radiometric features of sensors can be
found in the ESA User Handbook (ESA, 2015). The stated quality standards
for the absolute geo-location of the Sentinel-2 scenes (two pixels, 20 m) are
within the ESA requirements (ESA, 2017). The scenes covering the seven
study regions were downloaded from the ONDA DIAS (https://www.
onda-dias.eu/cms/es/) corresponding toPuerto Rico (tile T19QGV), Florida
Keys (T17RMH), Miami (tile T17RNJ), Cape Lookout (T18SUD), Hatteras
Inlet (T18SVE), Nantucket (T19TCF), and Cape Cod (tile 19TDG). These im-
ages corresponded to Level-1C (L1C) radiometrically and geometrically
corrected top-of-atmosphere (TOA) products. The study periodwas selected
based on lidar collection for each site: 2018 for Puerto Rico, Nantucket, and
Cape Cod, and 2019 for Keys, Miami, Cape Lookout, and Hatteras Inlet (the
latter also post-dates the 2018 Hurricane Florence). The images used in this
analysis were only screened for clouds over the study areas.

2.2. Atmospheric correction

The images were processed to Remote Sensing Reflectance (Rrs, sr−1)
with ACOLITE. This process eliminates the interference of atmospheric
scattering and absorption, and sensor and environmental noise. ACOLITE,

https://www.onda-dias.eu/cms/es/
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Fig. 1. Sentinel-2 true colour composite of the study regions in Puerto Rico, Florida Keys, Miami, Cape Lookout, Hatteras Inlet, Nantucket, and Cape Cod, highlighting the
broad range of geography and challenging conditions of the water quality in each site.
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developed by the Royal Belgian Institute of Natural Sciences (RBINS),
corrects Level-1 to Level-2 data products over marine, inland, and coastal
waters (Vanhellemont and Ruddick, 2016). This software incorporates an
image-based model, without requiring additional in situ atmospheric
datasets. The Dark Spectrum Fitting (DSF) atmospheric correction
algorithm was applied (Vanhellemont and Ruddick, 2018; Vanhellemont,
2019). The notably enhanced spectral resolution of the Sentinel-2 satellites
is key to obtaining good-quality products using the DSF model
(Vanhellemont, 2019; Pahlevan et al., 2021). Correction of the sunglint
over the surface reflectance was performed using the additional image-
based sunglint correction, since, during the study period, acute sunglint ef-
fects were observed at these latitudes. The Rrs products along the visible
and near-infrared (NIR) spectrum were calculated after resampling to 10
m pixel size. A further spatial filter (median filter on 3 × 3 pixel box)
was applied to the corrected bands to remove noise and inter-pixel variabil-
ity with minimal smoothing. Detailed information on this atmospheric and
sunglint correction can be found in Caballero and Stumpf (2020b).

2.3. Bathymetric model

SDB was obtained with the extensively utilized band ratio model
(Stumpf et al., 2003). Recent advancements using this SDB model were
3

also developed, based on a semi-automated multi-scene methodology as a
solution for operational bathymetric mapping over turbid regions
(Caballero et al., 2020). Therefore, this multi-temporal approach was also
implemented in this study to reduce the impact of turbidity by employing
a compositing algorithm and to improve monitoring in very shallow
water utilizing a switching algorithm. The study regions have local sources
of suspended material, colored dissolved organic matter, and phytoplank-
ton, so water quality is heterogeneous in time and space. The scenes within
3 months around the date of each lidar survey were collected. The underly-
ing analysis uses a linear transform (Stumpf et al., 2003) of the form:

pSDBij ¼ ln n π Rrs λið Þ= ln n π Rrs λj
� ���

(1)

with n a constant value of 1000 and λ indicating the appropriate bands, i
and j (e.g., 490, 560, 650 nm), and the depth is retrieved from an equation
of the form:

SDB ¼ m1∗ pSDB � moffsetð Þ (2)

with coefficients m1 and moffset derived by tuning the SDB composited im-
ages for each site with a linear regression using∼15 calibration points ob-
tained from NOAA chart soundings (https://www.charts.noaa.gov/)

https://www.charts.noaa.gov/
Image of Fig. 1


Fig. 2. Location of the study regions in Puerto Rico, Florida Keys, Miami, Cape Lookout, Hatteras Inlet, Nantucket, and Cape Code showing the histograms of errors for the
validation of satellite-derived bathymetry (SDB) with high-resolution in-situ lidar surveys.

I. Caballero, R.P. Stumpf Science of the Total Environment 870 (2023) 161898
(Table 1), followingmethods described in Caballero and Stumpf (2020a,b).
The use of charts, which often do not include the most current soundings,
may introduce some errors in the calibration but demonstrates the utility
of the method without dependence on current high-resolution surveys.
This procedure is significant for evaluating a precise approach that can be
Table 1
Calibration with chart data (m1 and moffset) and accuracy statistics (MAE, MedAE,
Bias, and N) of SDB against high-resolution lidar for each study region. The most
complex areas corresponded to North Carolina and New England.

Region m1 moffset MAE
(m)

MedAE
(m)

Bias
(m)

N

Cape Cod 85.2 0.868 1.50 1.20 −0.29 1,969,940
Nantucket 72.55 0.878 1.33 0.94 −0.58 120,560,400
Hatteras Inlet 90.84 0.949 0.51 0.41 0.13 114,915
Cape Lookout 68.0 0.944 0.48 0.31 −0.20 604,503
Keys 67.8 0.938 0.79 0.58 0.17 9,074,952
Miami 45.8 0.925 0.71 0.60 −0.17 7,338,482
Puerto Rico 47.1 0.877 1.42 1.31 0.35 1,861,750
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replicated in remote areas or regions without the requirement of high-
resolution bathymetry. Using chart soundings also assures complete inde-
pendence of the calibration data set from the validation lidar surveys. To
test the robustness of the calibration using charts, the same approach has
been applied in each of the seven study regions. For explicit information
on the multi-scene methodological strategy, consult Caballero and Stumpf
(2020a,b).

2.4. Optically deep-water areas

As SDB continues to expand in the application, defining the limits of us-
able data becomes significant (Caballero and Stumpf, 2020a,b, 2021). A
key component is the maximum detectable depth, namely the depth of
optically deep water (ODW), where the seafloor is too deep for a bottom
reflectance signal to be returned. Considering the variation in residual
turbidity over the seven study regions, two criteria were applied to identify
the location of water too deep for accurate depth retrievals. For the clearest
water, we used a supervised threshold of ≤0.003 sr−1 for the blue
(490 nm) and green (560 nm) reflectance bands after the composite, with
pixels having these values masked as ODW. These thresholds were chosen

Image of Fig. 2
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after the inspection of histograms and values for optically deep and shallow
pixels in the seven study sites. For water that was identified as optically
shallow (reflectance above this threshold), we then applied an additional
turbidity threshold. Caballero et al. (2019) calculated a relationship be-
tween the turbidity proxy (red-edge band, Rrs 704 nm) versus SDB for a
time series:

log SDBodwð Þ ¼ � 0:251∗ log Rrs704ð Þ þ 0:8: (3)

The algorithm did not retrieve depths if the depth was greater than
SDBodw. Based on the Rrs704 of the composite image, ODW was defined
as having values where the retrieved SDBodw was less than the retrieved
SDB depth. If either criterion applies, the water is deemed optically deep.
Over clear areas, where there is negligible turbidity, the first cutoff using
both blue and green bands can mask out ODW, whereas, over moderately
turbid areas, the second cutoff defines the maximum detectable depth.
This approach is image based, automated, and broadly applicable, as it
was tested in the seven study regions that have different water quality con-
ditions and seabed habitats.

2.5. Validation with lidar data

The airborne lidar bathymetry (ALB) in the seven study regions was ob-
tained from the National Geodetic Survey (NGS). These datasets were col-
lected by the Joint Airborne Lidar Bathymetry Technical Center of
Expertise (JALBTCX) in 2018 and 2019 using the Coastal Zone Mapping
and Imaging Lidar (CZMIL) system. These Digital Elevation Models
(DEMs) contained rasterized bathymetry at a 1-meter grid size. Anomalous
high and low elevation values have been flagged and removed, and point
cloud classification algorithms have been validated via manual review
and QA/QC. Bathymetric lidar coverage extends from the shoreline to
1000 m offshore or to the range of the laser, which penetrates 2 to 3
times the Secchi Depth depending on environmental conditions. The verti-
cal and horizontal accuracy of these datasets is 10 cm and 100 cm, respec-
tively at a 95 % confidence level. The high-resolution ALB observations
were selected as the reference in the study sites and compared to SDB prod-
ucts for validation and quality assessment. ALB datasets were subsequently
gridded to the Sentinel-2's image resolution (10 m), averaging ALB points
within each 10-m grid cell. To assess the accuracy of SDB retrieval with
the multi-temporal SDB, Mean Absolute Error (MAE), Median Absolute
Error (MedAE), and mean bias were calculated by comparing with the val-
idation data for the entire depth range and within five-meter depth inter-
vals for each study site.
Fig. 3. a) RGB composite of Sentinel-2 in Puerto Rico, b) airborne lidar bathymetry (ALB
2018, and d) map of SDB after masking out optically-deep waters (ODW).
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3. Results

Seven study sites, having different atmospheric conditions, water qual-
ity, and benthic habitats, were selected along the Caribbean and the eastern
coast of the U.S. (Figs. 1 and 2): in 2018 Puerto Rico and New England
(Cape Cod and Nantucket), and in 2019 Florida (Miami and Keys) and
North Carolina (Cape Lookout and Hatteras Inlet). Puerto Rico and Florida
areas were chosen as representatives of more clear environments while the
other featured more turbid environments. Sentinel-2 SDB maps that were
calibrated with chart soundings were evaluated using extensive indepen-
dent lidar sets in each study site. After ACOLITE atmospheric correction
and the compositing approach, SDB retrieved depths withMedian Absolute
Error (MedAE) varying from 0.31 to 1.31 m (Fig. 2 and Table 1). In Puerto
Rico, SDB retrieved information from 0 to 30m (N=1,861,750) withMAE
of 1.42 m, MedAE of 1.31, andmean bias of 0.35 m. In Florida, bathymetry
was obtained for the depth range of 0–25 m (N = 7,338,482) with Mean
Absolute Error (MAE) of 0.71 m, MedAE of 0.60, and bias of −0.17 m
over Miami and for the depth range of 0–15 m (N = 9,074,952) with
MAE of 0.79 m, MedAE of 0.58, and bias of 0.17 m over the Florida Keys.
In the most complex areas of North Carolina, SDB recovered data from 0
to 15 m (N = 604,503) with MAE of 0.48 m, MedAE of 0.31, and bias of
−0.20 m over Cape Lookout and from 0 to 10 m (N = 114,915) with
MAE of 0.51 m, MedAE of 0.41, and bias of 0.13 m over Hatteras Inlet.
Finally, in Nantucket and Cape Cod, SDB retrieved information from 0
to 20 m with MAE of 1.33 m, MedAE of 0.94, and bias of −0.58 m
(N = 120,560,400), and with MAE of 1.50 m, MedAE of 1.20 and bias
of −0.29 m (N = 1,969,940), respectively. The clarity of the waters
of Puerto Rico and Florida allowed mapping up to 30 m and 25 m, re-
spectively, whereas the rest of the areas retrieved up to 15–20 m due
to the less optimal environmental conditions. Generally, MedAE values
were lower than 1 m, except in Puerto Rico and New England, and bias
were lower than ±0.5 m. In Puerto Rico, higher errors resulted from a
slight bias (underestimation) in deep waters (depths 10–30 m). The de-
rived depths were plotted versus the lidar survey depths, demonstrating
consistent patterns between SDB products and the validation data from
shallow (<10 m) to deep (>10 m) waters (Fig. 1 Supplementary Infor-
mation). A majority of the points in the scatterplots were distributed
more densely along the 1:1 reference line, showing high accuracy.
Hence, the proposed method produced SDB closest to the validation
data. Comparing the histograms of residual errors and the scatterplots
shows such a conclusion.

The MedAE and bias results at binned depths were inspected to further
evaluate the stability of the model performance at different depth ranges,
calculating the error metrics in shallow waters (0–5 m), medium depth
) survey at 1 m spatial resolution in 2018, c)map of SDB at 10m spatial resolution in

Image of Fig. 3
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group (5–10 m), and deeper waters (10–15 m, 15–20 m, 20–25 m,
25–30 m) according to the lidar data (Fig. 2 Supplementary Informa-
tion). SDB achieved higher errors with increased depth ranges, and
the shallow and medium depths were more accurate than the deeper
depths in all the study sites. SDB errors typically indicate a relationship
with the water depth. The median errors increased sharply to >1–2 m at
the depth range of 20–30 m; effectively error is proportional to depth. In
addition, bias was negative for all sites and depths >10 m, except in
Florida, indicating a general underestimation of SDB over deep areas.
Fig. 4. a) RGB composite of Sentinel-2 inMiami area, including Biscayne Bay, b) airborn
SDB at 10 m spatial resolution in 2019, and d) map of the final SDB after masking out o
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The capability of SDB detection was constrained to maximum depths
of around 20 m. Nonetheless, shallow depths exhibited a significantly
consistent decrease of the error down to the 0–5 m increment with an
overall MedAE <0.5 m.

Depth maps of SDB at 10 m (Figs. 3–9c–d) and airborne lidar at 1 m
(Figs. 3–9b) are displayed in the seven study sites (Figs. 3–9a), indicating
coherent spatial patterns from shallow to deep waters. SDB is consistent
with lidar surveys on many details of the seabed geomorphology. For in-
stance, in bays (like Biscayne), similar bathymetric features (reef structures,
e lidar bathymetry (ALB) survey at 1 m spatial resolution in 2019, c)map of the final
ptically-deep waters (ODW).

Image of Fig. 4
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channels into Biscayne Bay, etc.) can be observed with both instruments
from shallow to offshore deep waters (Fig. 4). Moreover, SDB allowedmap-
ping the shelf boundary, in particular where the reef shelf drops to the off-
shore ocean, as could be observed in Puerto Rico (Fig. 3) or the Florida Keys
(Fig. 8). SDB shows topographical details from the shallow regions to areas
up to 20–30 m. It is worth mentioning that coverage is more sparsely dis-
tributed for the lidar surveys compared to SDB; the SDB spanned amore ex-
tended area than lidar, indicating depths >15 m, beyond the slope into the
ODW. For example, in Cape Lookout, Hatteras Inlet, and Nantucket, the sat-
ellite bathymetry results improved coverage in both the shallow and deeper
coastal water. The composite SDB yields greater spatial coverage than lidar
because it can retrieve data where the lidar mission may have been
constrained by turbidity, surf, or logistical limitations on the extent of the
survey.

Fig. 3 Supplementary Information shows the turbidity proxy of the red-
edge band (remote sensing reflectance at 704 nm, Rrs 704) after the com-
posite associated with the final SDB maps for each study site (Figs. 3–9c–
d). Rrs 704 captures scattering, but it may also show a return from white
sand in up to 3 m of water. While compositing reduces turbidity, some re-
sidual remains dependent on the overall water clarity conditions. On one
hand, over clear environments such as Puerto Rico (and the reefs off Flor-
ida), minimum turbidity levels were associated with the composite. On
the other hand, residual turbidity levels were encountered in North Caro-
lina and New England, in particular, in Hatteras Inlet. The multi-temporal
approach returns turbidity products indicating areas that may still have a
residual shoaling bias or where the water is chronically optically deep
due to severe turbidity. The SDB maps derived from the Sentinel-2 scenes
were grainy over the ODW areas (Figs. 3–9c) and the noisy fluctuation of
water depth was reflected in some offshore regions even with the filtering
Fig. 5. a) RGB composite of Sentinel-2 in North Carolina, b) airborne lidar bathymetry (A
resolution in 2019, and d) map of the final SDB after masking out optically-deep waters
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applied. However, ODWdetection using the definition of the maximum de-
tectable depth developed in this study, eliminated most of these artifacts
(Figs. 3–9d), as well as otherwise invalid depth retrievals in water that is
too deep or turbid to detect the bottom. The image-based masking for
ODW was not tuned for these areas, indicating it is broadly applicable
(Fig. 3 Supplementary Information).

4. Discussion and concluding remarks

4.1. Turbidity in satellite-derived bathymetry

The heterogeneity of the coastal environment generally deteriorates
SDB performance, with turbid pixels producing underestimations in depths
as already demonstrated in previous studies (Minghelli-Roman and
Dupouy, 2013; Hamylton et al., 2015; Pe'eri et al., 2016; Caballero et al.,
2019; Caballero and Stumpf, 2020a; Casal et al., 2020). To ensure accuracy
and stability, especially over moderately turbid environments, correction
for turbidity is necessary (Kutser et al., 2020; Ashphaq et al., 2021¸
Cesbron et al., 2021). By the compositing adjustment, SDB substantially en-
hances existing survey methods addressing the SDB algorithmic challenges
faced by individual scenemodels. Themulti-scene compositing strategy ad-
dressed limitations inherent in conventional methods, retrievingmore data
and pushing the method into the water with real and variable turbidity. Vi-
sual selection of a single “optimal” scene cannot accomplish this, because of
the spatial and temporal heterogeneity of turbidity patterns (Caballero and
Stumpf, 2020a). The approach carried out in the seven study regions from
the Caribbean to New England indicated the compositing algorithm effec-
tively estimated depth with a MedAE ranging from 0.31 to 1.31 m for
depth ranges of 0–30 m. Bias results ranged from −0.58 to 0.35 m within
LB) survey at 1 m spatial resolution in 2019, c) map of the final SDB at 10 m spatial
(ODW).

Image of Fig. 5
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the different study sites, results that could be ascribed to areas being hetero-
geneous in water constituent compared to recent SDB findings obtained
over coral reefs and clear water environments (Hedley et al., 2018;
Evagorou et al., 2019; Li et al., 2019; Poursanidis et al., 2019; Sagawa
et al., 2019). These outcomes show that multi-temporal compositing pro-
vides a capability that makes progress in detecting SDB in environments
from clear water to water with residual turbidity.

The calibrations (Table 1 in Methods) showed a consistent change in
slope (m1, Eq. (2), see Methods) from lower values in clear water (Miami
and Puerto Rico) to higher values in areas with consistent turbidity
(Nantucket, Cape Cod, and Hatteras). Caballero and Stumpf (2020a,b)
transferred calibrations between clear and turbid water areas and got
similar error metrics. There is an assumption that empirical coefficients
vary randomly, thereby necessitating extensive tuning. These results
suggest this is not the case, and that there is a consistency in the behav-
ior of the two coefficients. The m1 appears to depend on turbidity; po-
tentially the calibration can be adjusted based on the background
turbidity to achieve a reasonable first estimate. The moffset coefficient
relates the relative SDB (pSDB in Methods) to the reference datum.
The similarity in moffset values across regions suggests that it may be
possible to converge on a standard value for moffset, particularly once
the influence of water level (tide) on the values is addressed (as tides
will inherently alter the relationship of “zero” depth in the SDB to the
reference datum).

Accuracy does vary between depths. The bathymetry errors of all the
sites showed a declining error with decreased depth (Fig. 2 Supplementary
Information). Overall, all show the same trend in MedAE; when depths
>15 m were retrievable, the model slightly underestimated (negative bias)
the depth. This may reflect a lack of signal from lower albedo substrates. Ul-
timately, even in the clearest water, thewater column completely attenuates
the light reflected from the bottom (Dekker et al., 2011). The maximum
Fig. 6. a) RGB composite of Sentinel-2 in Nantucket, b) airborne lidar bathymetry (ALB
resolution in 2018, and d) map of the final SDB after masking out optically-deep waters

8

retrievable depth in these cases (over bright substrates) appears to be
about 30 m. Otherwise, SDB performed best in the 0–15 m range. Similar
findings with severe underestimation for depths in the range of 10–20 m
were found in other studies (Kerr and Purkis, 2018; Traganos et al., 2018;
Caballero and Stumpf, 2019; Geyman and Maloof, 2019; Susa, 2022).
Different benthic surfaces with variable bottom reflectance are located in
each of the study sites (e.g., sand, reef, deep coral, seagrass, and rocks).
While substrate albedo may limit the maximum retrievable depth, our
results suggest that benthic substrates are not otherwise a source of error
as initially demonstrated in Stumpf et al. (2003) and subsequent papers
(Caballero and Stumpf, 2019; Caballero et al., 2019; Caballero and
Stumpf, 2020a,b, 2021).

Traditionally, imagery for SDB is analyzed to eliminate artifacts
from turbidity, waves, and clouds. In this study, images were only
screened to remove those with cloud cover, as the compositing method
addressed the other artifacts. Previous research suggested that machine-
learning models are more affected by environmental variables than the
inversion models with empirical calibration, as the one used in this
study (Kibele and Shears, 2016; Duan et al., 2022). Li et al. (2019) ap-
plied the band-ratio algorithm (Stumpf et al., 2003) for depth retrieval
and generated a manually selected water attenuation index for pristine
viewing conditions in offshore waters, which may not always represent
the water attenuation conditions in shallow areas. On the other hand,
SDB for single images was improved by estimating the inherent optical
properties and using tuning coefficients (Kerr and Purkis, 2018; Zhu
et al., 2020). Our compositing approach automatically accounted for
turbidity conditions, as well as incorporated sunglint correction and
gaps reduction. These advances are key; the SDB model is more widely
applicable to a variety of environments from clear (the Caribbean),
moderately turbid (Florida Keys and Miami) to severely turbid (North
Carolina and New England) areas.
) survey at 1 m spatial resolution in 2018, c) map of the final SDB at 10 m spatial
(ODW).

Image of Fig. 6


Fig. 7. a) RGB composite of Sentinel-2 in Cape Cod, b) airborne lidar bathymetry
(ALB) survey at 1 m spatial resolution in 2018, c) map of the final SDB at 10 m
spatial resolution in 2018, and d) map of the final SDB after masking out
optically-deep waters (ODW).
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4.2. Optically deep-water masking

ODW is important information, given the depth constraints of SDB, but
is typically inferred by interpretation of SDB imagery, rather than delin-
eated (Lee et al., 2022). Methods for determining ODW are new and
focus mainly on clear water environments. Lee et al. (2022) used a super-
vised threshold of spectral and band ratio analysis in the Bahamas,
Tanzania, and theWadden Sea. Cao et al. (2020) implemented an empirical
bathymetric retrieval method to exclude non-optimal image data from the
image on a per-pixel basis. Other advances in the estimation of
chlorophyll-a concentration from optical imagery accounted for inherent
optical properties by refining algorithms to automate the identification of
ODW (McCarthy et al., 2022). Lee et al. (2021) developed a prototype
confidence score system obtained through the fusion of lidar and Landsat-
8 data in the Bahamas, a clear water site, which eliminates ODW and
classifies all pixels of optically shallow waters into three categories with a
preliminary set of criteria. A regional high-resolution bathymetry of the
North West Shelf of Australia based on Sentinel-2 satellite images was
lately accomplished using Stumpf et al. (2003) SDB model, where the
maximum depth of validity of the data was delineated by using a threshold
coefficient of correlation between SDB and the calibration data (Lebrec
et al., 2021).
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Using a small set of optically-based rules, we developed an automated
model for masking ODW and defining the maximum detectable depth
that can be applied in both clear and turbid water. This study showed
that the ODWmask can eliminate large areas of data that would be invalid
(Figs. 3–9). The criteria in our method apply conditions suitable for clear
water (masking pixels with blue or green bands ≤0.003 sr−1, see
Methods) and turbid water using a turbidity proxy solution from
Caballero et al. (2019) (Eq. (3) in Methods). This approach allows transfer-
ability to other environmentswith no tuning requirement. However, refine-
ment of the ODW method is still needed in areas of chronic moderate
turbidity. A comparison of Fig. 6d with NOAA chart data 13,241 (https://
charts.noaa.gov/OnLineViewer/13241.shtml) indicated some invalid shal-
low values for ODW over Nantucket Sound north of Nantucket (41° 24′ N
and 70° 16′W), the most complex region evaluated here. These might
have resulted from high and constant turbidity patterns in all the multi-
temporal scenes used in the composite. The ODW solution may require ad-
justment to address these severe and chronic turbid environments. Further
research will be necessary to understand what factors caused the ODW so-
lution to miss the chronically turbid features in this site. In other cases, the
masking excluded most ODW problematic areas (Figs. 3–9).

4.3. Sentinel-2 in support of shallow coastal bathymetry for global science
applications

The multi-temporal strategy can provide effective depths in a range of
environments from near tropical to temperate moderately turbid waters
(Figs. 2–3 Supplementary Information). Defined relationships between
depth limitation and turbidity are needed to identifyODW, thereby improv-
ing the resulting bathymetric maps. This approach allows for an automated
detection that does not depend on the local tuning of a model for ODW. In-
consistencies in the composite could be expected where merging scenes are
collected at substantially different times, such as before and after extreme
weather events, or over several years. We recommend implementing the
multi-temporal model with a maximum temporal range of 6 months, de-
pending on the application case. In addition, a new Specification Matrix
has been introduced in the 6th S-44 Edition of the International Hydro-
graphic Organization's Standards for Hydrographic Surveys (International
Hydrographic Organization-IHO, 2020), which added flexibility for other
types of hydrographic surveys carried out for purposes beyond the safety
of navigation. Our outcomes (Fig. 2; Figs. 1–2 Supplementary Information)
are in accordance with the S-44 Matrix code, reporting a total vertical un-
certainty (TVU) generally meeting Criteria 7 (Bc7 = 1 m) and Criteria 8
(Bc8 = 0.5 m) for depths <10 m and Criteria 6 (Bc6 = 2 m) and Criteria
7 (Bc7 = 1 m) for depths ≥10 m. This new standard provides a range of
selectable criteria for bathymetric parameters as part of a hydrographic sur-
vey to allow flexibility and customization in the tasking and assessing of hy-
drographic surveys and the accommodation of new and emerging
technologies, such as the assessment and characterization of SDB surveys.
Notwithstanding, the generalization potential of the compositing model
in a larger region still requires additional investigation, in particular, the
tidal correction over meso- and macrotidal regime systems.

With the advancement of high spatial resolution satellite sensor technol-
ogies, SDB is becoming a powerful tool for deriving water depth in coastal
waters. In addition, the photon-counting lidar system, Advanced Topo-
graphic Laser Altimeter System (ATLAS) onboard the Ice, Cloud, and land
Elevation Satellite-2 (ICESat-2), launched on 15 September 2018 by
NASA, can retrieve valuable bathymetry in shallow coastal and inland
water body areas. Therefore, bottom-depth fusion from ICESat-2 andmulti-
spectral satellite imagery will be highly complementary, since ATLAS could
potentially provide useful reference data for calibration (replacing sound-
ings from nautical charts) for Sentinel-derived bathymetry in remote or
poorly mapped areas. Consequently, this emerging information will ulti-
mately enhance the effectiveness and competitiveness of SDB for coastal
bathymetric products. The workflow presented in this study generated
SDBmaps that can be readily applied elsewhere in the U.S. and worldwide,
encompassing a much larger range of time and spatial scales than using

https://charts.noaa.gov/OnLineViewer/13241.shtml
https://charts.noaa.gov/OnLineViewer/13241.shtml
Image of Fig. 7


Fig. 8. a) RGB composite of Sentinel-2 in the Keys, b) airborne lidar bathymetry (ALB) survey at 1 m spatial resolution in 2019, c) map of the final SDB at 10 m spatial
resolution in 2019, and d) map of the final SDB after masking out optically-deep waters (ODW).
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field surveys. These methods can produce a consistent bathymetric product
across different conditions, thereby supporting cost-effective routine bathy-
metric mapping of optically shallow waters. The promising approaches can
be immediately applied in more environments with valuable implications
to advance marine research, assess global vulnerabilities, and climate
change impacts in coastal ecosystems, and assist management, monitoring,
industry, and navigation. This information allows low-cost and scalable al-
ternatives tofieldmonitoring and can be applied to identify coastal features
with high spatial detail. A practical example is the characterization of
hurricane-induced bathymetric changes in the U.S. (Caballero and
Stumpf, 2021; Herrmann et al., 2022). As a result, SDB may substantially
enhance change detection and support recursive coastal monitoring. More-
over, SDB maps at this resolution can describe geomorphic features, which
can advance benthic habitat monitoring and classification (Hedley et al.,
2018; Kutser et al., 2020). In this regard, it is indispensable to mention
the Nippon Foundation-GEBCO Seabed 2030 project, which can be almost
entirely fulfilled by improved SDB methodologies such as the ones devel-
oped in this study. With routine and repetitive image acquisition, the
Sentinel-2 mission can generate information supporting the onset of re-
search projects at local, regional, and national scales for historical, contem-
porary, and quasi-real-time seabed monitoring.
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Fig. 9. a) RGB composite of Sentinel-2 in Hatteras Inlet, b) airborne lidar bathymetry (ALB) survey at 1 m spatial resolution in 2019, c) map of the final SDB at 10 m spatial
resolution in 2019, and d) map of the final SDB after masking out optically-deep waters (ODW).
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